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Abstract. A method based on the Darboux transformation in the form of pole-expansion 
is presented for finding soliton solutions of the derivative nonlinear Schrodinger equation. 
Related matters conceming Alfven waves in plasmas are also discussed. A generalised 
Zakharov-Shabat system of equations and its reduced form are deduced simply from the 
Darboux transformations. The expected asymptotic behaviour of the multisoliton solution 
is derived from its expression in terms of determinants. An explicit expression for the 
N-soliton solution is given by means of algebraic techniques from the generalised Zakharov- 
Shabat equations. 

1. Introduction 

In recent years there has been great interest in nonlinear Alfven waves. Mikhailovskii 
et a1 (1976) presented arguments for the existence of Alfven solitons. Mio et a1 (1976) 
obtained a derivative nonlinear Schrodinger (DNLS) equation for Alfven waves in a 
plasma. Mjelhus (1976) considered the stability and characteristics of large-amplitude 
waves. 

The DNLS equation was shown to be completely integrable and to have the infinity 
of conservation laws (Kaup and Newell 1978, Wadati et a1 1979). The DNLS equation 
has been solved by an appropriate inverse scattering method (Kaup and Newell 1978). 
Mjolhus and Wyller (1986) discussed processes of soliton formation as well as the 
effects of finite temperature and conductivity. Based on the Kaup-Newel1 inverse 
scattering tranformation scheme, Ichikawa and Abe (1988) analysed the initial value 
problem of the DNLS equation. 

Kaup and Newell (1978) showed that poles of a Jost solution for the DNLS equation 
must be in pairs located symmetrically about the origin in the complex plane of the 
spectral parameter. It becomes very complex when one demonstrates the required 
analyticity of the Jost solution and calculates the expressions for the soliton solutions. 

The purposes of the present paper are to give a simple method for finding soliton 
solutions of the DNLS equation and to discuss related matters conceming Alfven waves. 
In section 2, we present a method based on the Darboux transformation in the form 
of a pole expansion. Recently, the same method has been proposed for finding soliton 
solutions of the nonlinear Schrodinger (NLS) equation (Chen et a1 1988). Since in this 
method of using the Darboux transformation to find soliton solutions it is unnecessary 
to derive either the analyticities of the Jost solutions or the time dependence of the 
scattering dates, its virtue is more conspicuous for solving the DNLS equation. In the 
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case of the NLS equation, the Darboux transformations can be determined by simply 
solving differential equations resulting from the Lax equations. This procedure must 
be modified in the case of the DNLS equation, because the corresponding resulting 
differential equations are hard to solve. We shall show that the Darboux transformation 
in the case of the DNLS equation can be specified by the conditions that the inverse 
Darboux transformation exists and poles of the Darboux transformation and of its 
inverse are regular points of the Lax pair. 

In section 3, a generalised Zakharov-Shabat system of equations and its reduced 
form are deduced from the determined Darboux transformations. In section 4, to 
justify the method, the Jost solutions obtained are shown to satisfy the Lax equations 
of the DNLS equation. In section 5, the N-soliton solution of the DNLS equation is 
expressed in terms of determinants of the known quantities by solving the reduced 
Zakharov-Shabat equations. In section 6 ,  the expected asymptotic behaviour of the 
N-soliton solution is obtained by its expression in terms of determinants. In section 
7, the pure algebraic techniques for calculating explicit solutions from the generalised 
Zakharov-Shabat equations are given. In section 8, the explicit expression for the 
N-soliton solution of the DNLS equation is written in a form similar to that used in 
the direct method of Hirota for the NLS equation (Hirota 1973). In section 9, the 
concluding remarks are given for the initial value problem of the DNLS equation. 

2. Darboux transformation in the form of pole expansion 

We shall consider the DNLS equation 

iu,  + U,, +i((u12u), = o (1) 

whose Lax equations are 

where 

U ( x r )  = (L 
- u ( x t )  0 i 

and the overbar denotes the complex conjugate. The compatibility condition of (2) 
and (3)  yields 

u,+~u,,u,- U ~ = O  (7) 
whose matrix elements are (1) and its complex conjugate. 

Uo=O is obviously a solution of (7), its related Jost solution of (2) and (3) is 

F 0 ( z g )  = exp[ -i( ~ - ~ x  + 25-4t )u , ] .  

Since 
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we may demand that 

F ( 5 )  + as 131 +CO. (10) 

F ( x t l )  = G(xt5)Fdxt l )  ( 1 1 )  

G(5)  + as I l l  + 00. (12) 

a3J5(-lb3 = L(5) a 3 M ( - l b 3  = M ( 5 )  (13) 

u,F(- l )u ,  = F ( l )  a3G(-5)u3 = G(3).  (14) 

We try to find the Jost solution of the form 

From (4)-(6) ,  we have 

and then 

We propose an ansatz that G ( l )  is meromorphic and, further, has only poles of 
order one. The right-hand equation of (14) shows that poles of G ( l )  must be in pairs 
located symmetrically about the origin of the complex l plane. In the case of 2N 
poles, by virtue of ( 1 2 )  and (14), we have 

where 6 is a complex constant and Aj is the residue of G(xt5)  at 6 .  
From (4)-(6) ,  we have 

-J5+([) = U l )  -M+(C) = M ( 5 )  (16) 
and then 

F - ' ( J )  = Ft(C) G- ' ( [ )  = Gt([)  
where the dagger means the Hermitian conjugate. Thus we have also 

We now consider a series of transformations, each of which has a couple of poles, 

1 1 
5- l j  5 + 5j 

D,(xtC) = z+- Bj -- u3Bju3 

The transformation Dj(x t l )  is referred to as the Darboux transformation, we write it 
in the pole-expansion form instead of its usual power series expansion form. 

Taking the limit as l+ Lj, from DjDJ-' = D;'Dj = Z, we have 

B.Dr ' ( l . )  J J  J = Dy' ( l . )B .  J J J  = 0. ( 2 5 )  
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This yields that Bj is degenerate, and may be written as 

where 

For the Jost solution F, (x t l ) ,  (2) and (3) are 

& F , ( X t l )  = L,(xtS)F,(xtS) (29) 

a r F, ( x t f  = (xtd') F, ( x t l  1 (30) 
where L, and M, are obtained from (4)-(6) by setting a particular U,, which we shall 
determine. From (29), we have 

a,F,(xtl)F;'(xtL) = L, (x t l ) .  (31) 

Taking the limit as l-, l,, we have 

{ax r B,F, - 1 ( x q ,  11 1 F;) 1 (xt5,) q ( xtl, ) = 0 (32) 

ax[B,F,-,(xtS,)I=. . . B,F,-,(xtS,) (33) 

if l, is a regular point of L,. By virtue of (25), we have 

where the expression on the left of B, in the right-hand side is not obviously written. 
Similarly, we have 

ar[B,F,-1(xtl,)l= * BlF,-l(xtS,)* (34) 

(g,h,) = (b,c,)~;:l(xtS,)  (35) 

Substituting (26) into (33) and (34), we find 

where b, and c, are constants. B, is thus completely specified. 

3. The generalised Zakharov-Shabat equations 

From (27) and (28), we have 

where the superscript T means the transpose. From (23) and (15 ) ,  we have 

A] = lim (L- l , )G( l )  
6-L, 

= * DJ+*(L)BjDJ- l .  3 * Dl(l,). (38) 
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By virtue of (36) and (37), we have 

Ai = a 7 ' ~ 2 G - ' ( l ~ ) ~ u 2  

where 

Therefore, we may write (15) as 

From (26), (35), (38) and (39), we may write 

and then 

(39) 

on account of (17). Although qj, etc can be expressed in terms of the known quantities, 
they may be directly determined in the following manner. 

Setting 5 = fk in (41), and taking account of (42) and (43), we obtain 

Here we have taken cj = bJ:' without loss of generality, and have written 

J ;  = bj exp i( cy2 + 2lY4t). (45) 
Equations (44) are obviously referred to as the generalised Zakharov-Shabat equations; 
the N-soliton solution of the DNLS equation can be determined from these 2N linear 
algebraic equations. 

Multiplying (44) by ( f k f i ' ) T  from right, we obtain 

Equation (46) is obviously the reduced form of the generalised Zakharov-Shabat 
equations, since qj and ICI, can both be determined by solving these N linear algebraic 
equations in the N-soliton case. 

4. Demonstration 

We ought to show that the Jost solution obtained by the above procedure satisfies the 
corresponding Lax equations. Equation (35) ensures that *lj ( j  = 1, 2, . . . , N )  and 



444 Nian-Ning Huang and Zong- Yun Chen 

their complex conjugates are regular points of [ a X F ( x t 5 ) ] F - ' ( x t 5 ) .  From (1 l ) ,  we have 

[ a , F ( x t ~ ) ] F - ' ( x t ~ )  = Gx( 5) G-'( 5) - i l -2G(  5)a3G-'( 5). (47) 

The factor [ a , F ( x t ) ( ) ] F - l ( x t ( )  is thus analytic everywhere except at 5 = 0. 
We expand G(5) into a Taylor series about 3=0 :  

and then 

where 

N 

p,, = 6,01- 1 [Yfl-'[Aj + ( - l)"a3A,a3]. 
J = I  

Substituting (48) and (49) into (47), we have 

[ a , F ( x t ~ ) ] F - ' ( x t ( )  = 5-2Q-2+ 5-'Q-' + Qo+. . . 
where 

Q-2 = -i(POa3P:) (53) 
Q-l = -i(pl03pA+pOa3p:). (54) 

From (51), we can see that peven are diagonal matrices that commute with a,, and podd 

are matrices with vanishing diagonal elements that anticommute with a3. We thus have 

-i(pou,pA) = -in3 ( 5 5 )  

-i(pla3p~4p0a3p:) = -2i(plpAa3) = U (56 )  

due to (50), and since p I p i  is a matrix with vanishing diagonal elements satisfying 

-2i(plpA03) = - [-2i(plp~a3>]' (57) 
we can identify it with U. 

Therefore, [ a x F ( x t 5 ) ] F - ' ( x t 5 )  - ( -i5-'a3 + I-'  U )  is analytic in the whole complex 
5 plane and tends to zero as 151 + 03, (lo),  by the Liouville theorem, it is equal to zero. 
This yields 

G,(S)G-'(~)-~Y-~G(~)~,G-'(~) = -i5-'u3+(-' U ( 5 8 )  
or (2). 

From (2), we have 

a : F ( x t 5 )  = [ L 2 ( x t 5 )  + L , ( x t ~ ) ] F ( x t ~ )  (59 )  

(60)  

and then 

Gx,(5) - 2i5-'Gx ( 5)u3 = K 2  V'G(5) + 5-' U,G( 5). 
Multiplying it by a3G-'(5) from the right, we have 

G&)u3g-'(l) - 2i5-*GX(C)G-'(5) = (5-' U'+ 5-' Ux)G(()u3G-'(5). (61) 
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From ( 5 8 )  and (61), we have 

- i(p,a,p; + . . . + poa,p:) = -ti u2a, 
-i(p3a3pA+. . .+p,a,p:)  = ~ u ~ - ~ ~ u , c T ~ .  

From ( l l ) ,  we have 

[ a , F ( ~ r S ) ] F - ~ ( x t ~ )  = G,( 5)  G-'( 5 )  - 2iL-4G( l)a,G-'( 5). (64) 
Equation (35) ensures that (64) is analytic everywhere except at {=O. Substituting 
(48) and (49) into (64), and taking account of ( 5 5 ) ,  (56), (62) and (63), we can see 
that the principal part of (64) at 5 = 0  is just M ( x t 6 )  in ( 5 ) .  Therefore, 
[ a , F ( x t ~ ) ] F - ' ( x t l ; ) - M ( x t 5 )  is analytic in the whole complex 5 plane and tends to 
zero, ( l o ) ,  by Liouville theorem it is equal to zero. This yields (3). We have shown 
that the Jost solution obtained by the above procedure satisfies the corresponding Lax 
equations. From (56), the N-soliton solution of the DNLS equation can be given by 

- 
= 2 i ( ~ l ) 1 2 ( ~ O ) 2 2 ~  (65) 

5. Expressions of multisoliton solutions in terms of determinants of the known 
quantities 

From (46), we have 
N 

2 C U J - ' Q j f i l K j k  = f i  (66) 
j = 1  

where 

Since we have the known linear algebra formula, 
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which is valid for a non-singular M x M matrix R and arbitrary rows p and q, (71) 
and (73) can be rewritten as 

( P , ) , ~ =  -[(det K)- 'det  K ' - 1 ]  (75) 
(po)22= (det K)-' det K "  (76) 

Substituting (75) and (76) into (65), the N-soliton solution of the DNLS equation has 
been expressed in terms of determinants of the known quantities. 

From (45), we may write 

A = exp[ir, - s,] 

rl = (Re lY2)x + 2[ (Re lJ-2)2 - (Im a;')'] t + 8, 

(79) 

(80) 

(81) 

(82) 
From (75), (76) and (65) ,  we easily find the one-soliton solution of the DNLS 

where 

s, = (Im l;')[x - x, + 4(Re l;2) t ]  

bl = exp[i8, + (Im l;2)x,]. 

equation: 

s:-c 7: S'lf114+11 

51 lUII4+ S; l l I f 1 1 4 +  SI 
exp-i2r, Al-Il 
cosh 2s' 

u l = 2 i ~  

= 2i( i ,  - A , )  (1 -~l+;il tanh 2s, 

A I  -1, 
x l+- tanh 2s, ( A I + ~ I  

where 
l-'=A.=A!+iA'! I I I I '  

Equation (83) can be written as 

u1 = g1 exp - 
where 

dl = 2r, + 3  tan-' - tanh 2s, 1 
g: = (4A;)2 [ ( 1  +$) cosh' 2s, 

or 

(A;2  + A y 2 )  cosh 4s, + (A:2 -A;* )  

Equation (83) is the same as that given by Kaup and Newel1 (1978); equations (88) 
and (87) are closely related to the expression of Mjdlhus (1978) and that of Anderson 
and Lisak (1983), respectively. 
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6. Asymptotic behaviours of multisoliton solutions 

The expected asymptotic behaviour of the N-soliton solution will be obtained directly 
from its expression in terms of determinants, (65), (75) and (76). The calculation is 
performed for the case of positive Im 5,y2, j = 1, 2, . . . , N, it can be extended to the 
general cases without difficulty. We also assume that 

(ReJy2)>(Re5;*)> ... >(Res;*) (89) 

without loss of generality. The vicinity of x = xj - 4( Re 5 , y 2 ) t  is denoted by Oj .  In the 
limit as t+m, these vicinities must be separated from left to right as 

a N ,  a N - 1 ,  * * * ,al. (90) 

In the vicinity am, 
(x - xj) + 4( Re l Y 2 )  t -+ 00 IJ;I-+O j < m  (91) 

(X-Xk)+4(Re <i2)f+ -0O l h l + ~  k >  m. (92) 

det K then approaches det K,: 

Hereafter i and j run from 1 to m - 1, and k, 1 run from m + 1 to N. In (93), we reserve 
those elements which contribute to the determinant terms of the order of 

The RHS of (93) can obviously be decomposed into two determinants, each of 
Ifm+1141fm+214 * - . IfN14* 

which is proportional to the determinant Dm 

so that 

where 

(96) 

(97) 
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When t + 00, in the vicinity Cl,, det K’ approaches det K L  

det K,= 

We decompose it to obtain 

det KL- 

We then obtain 

det K ,  = 

When t + CO, in the vicinity Cl,, det K ”  approaches det K Z :  

(99) 

where 
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Similarly, 

where 

when + -CO, in the vicinity R,, we have 

fLl2 =f'm P ( 5, - I  a ( 5,). (108) 
Comparing (105) and (107) with the single soliton solution related to spectral parameter 
lm, the additional phases and displacements of peak, S'," and A:', are easily derived: 

fZ )=fm exp[iS',"- (Im 5i2)Alnf)] (109) 

W = * t [ a r g ~ ( ~ ~ ) - a r g  a(lm)I (110) 

(111) A(*)  = 
m *t(Im 5,')-'[lnla(rm)l -lnlP(5m)ll. 

7. Method for explicitly solving the generalised ZakharovShabat equations 

From (44), we obtain a system of linear algebraic equations 

If we introduce 

pj  = -isj 

c = ( a ; ' / 2 f ; ' ,  . . . , a y j - ; ' )  

@ =  (a;"2qJl, . . . , a'?q ( P N )  

Y=(a;"2$l,...,aN - 1 / 2  $'?q) 

- 1 / 2  

then (112) and (113) can be written as 

+ = - @ Q  

O = C + q Q T  

and (69) can be expressed as 

(p1)12 = iC( I + Q Q ' ) - ' ~ - ~ C ~  
where p - 2  is simply a diagonal matrix, i.e. diag(p;*, . . . , pk2) .  

By virtue of (74), we have 

(pl)l2=i C Cj[(Z+R)-'Ijk~;~ck 
i, k 

= i{[det( Z + R ) ] - '  det( Z + R') - 1) 
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where 

It is convenient to express (125) as 

R ’ =  Q~Q~IT 

where Q’ and Q“ are matrices whose rows are extended from 1 to N, and columns 
from 0 to N 

We have 

N 

d e t ( l + R ) = l +  c R ( j l , j 2 , .  . . ,h )  (129) 
r =  1 lsjl<j2<.,.<j,r N 

and 

R ( j l  , j 2 , .  . . ,A)  = c Q ( j 1 , j 2 , .  . . , j , ;  k,, k l ,  k , , .  . . , k,) (130) 

by virtue of the Binet-Cauchy formula, where Q( j , ,  j , ,  . . . , j ,  ; kl  , k 2 ,  . . . , kr )  denotes 
a minor, which is the determinant of a submatrix of Q consisting of ( j , ,  j , ,  . . . , J r )  

rows and ( k , ,  k 2 , .  . . , k , )  columns. Q ( j , ,  j 2 ,  . . . , j , )  means a principal minor, i.e. 
~ ( j ~ , j 2 , . . . , j , ; j ~ , j * , . . . , j r ) .  

Using the known formula 

I r k , <  k2< ... < k , r  N 

we obtain 

where 

Similarly, we also have 
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The summation can obviously be decomposed into two parts; one is extended to k ,  = 0, 
the other to k ,  2 1. The latter is just R ( j , ,  j , ,  . . . , j , )  on account of (127) and (128). 
We thus have 

det(Z+R')-det(Z+ R)  

X n PT2 n p: 
j k 

where j and j '  satisfy (133), but 

k, k ' ~ ( k 2 , .  . , kr } .  

From (120), (121) and (70), we have 

(po)22= l + C ( Z + R ) - ' Q l - ' c r  

and then 

= [det( Z + R)]-' det( I + R") (141) 

where 

R"= R + Qp-'cTC. 

It is easily seen that R" can be expressed as 
RI1 = S'SllT 

where 
(143) 
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In analogy to (93), using (92), we have 

S'(kl ,  k2, .  . . , k r ; j 1 , j 2 , .  . . , A )  

where k, k' and j ,  j '  satisfy (134) and (133), respectively. The complex conjugate of 
the product of (147) and (148) is obviously equal to (132). We have thus shown that 

det( I + R") = det( Z + R )  (149) 
and 

(P0)22=[det(Z+R)]-'det(Z+R). 

It is obvious that 

I(Pd221 = 1 
which can also be directly obtained from (78). 

8. Explicit expression of the N-soliton solution of the DNLS equation 

We obtain the explicit expression of the N-soliton solution of the DNLS equation 

det(Z+R')-det(Z+R)- 
det( I + R )  U N  =-2 

[det( Z + R)]' 

where det(Z + R )  and det(Z + R') - det(Z+ R )  are expressed as (129) and (136), respec- 
tively. 

It is convenient to rewrite (129) and (136) as 

d e t ( l + R ) =  1 ~ I ( W )  exP (153) 
( P )  

det(Z+ R') -det(Z+ R )  

j = 1  (2uj-ln &j)pj+ I s j c k s 2 N  A j k p j p k )  (154) 

where 

wj = ln(f7') f o r j =  1,2, .  . . , N 

eXp A,, = ( p;  - forj, k =  1,2, .  . . , N orj,  k =  N + 1 ,  N + 2 , .  . . , 2 N  (157) 
eXp A j k  = (pj' - p i ) - 2  f o r j =  1 ,2 , .  . . , N a n d  k =  N + l ,  N + 2 , .  , . , 2 N  (158) 
and where 

N 2 N  
when pj=  pj 

% ( p )  = j = 1  j = N + 1  (159) 
10 otherwise 
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N 2 N  
when c pj = 1 pj+l 

% ( p )  = j = l  j = N + 1  

otherwise 

~ ~ = l o r O  (161) 
and the summations in (153) and (154) are extended to all possible combinations of 
values of p l ,  p 2 , .  . . , p Z N  in (161). 

Although the form of expressions in (153) and (154) is similar to that used in the 
direct method of Hirota (1973) for the NLS equation, so far as we know, the DNLS 

equation has never been solved by this method. It may be realised with reference to 
(152). 

9. Concluding remarks 

We conclude the present paper by saying a few words on the initial value problem of 
the DNLS equations. Since we have found explicit expressions for multisoliton solutions, 
the initial values corresponding to different choices of lj and bj will be completely 
defined. The initial value given by (42)-(45) in the paper of Ichikawa and Abe (1988) 
is hardly realised by choosing lj and bj even in the two-soliton case. The initial value 
problem of the DNLS equation seems more complicated than that of the NLS equation; 
we believe that the explicit expressions for multisoliton solutions will be conducive to 
the analysis of this problem. 

We have given a systematic study of soliton solutions of the DNLS equation, from 
presentation of a method based on the Darboux transformation in the form of a pole 
expansion to an expression for explicit multisoliton solutions. This study will provide 
a sound basis for further research on problems relating to Alfven solitons in plasmas. 
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